Tải FREE sách N5 Mathematics PDF có tiếng Việt

Tải FREE sách N5 Mathematics PDF có tiếng Việt

Tải FREE sách N5 Mathematics PDF có tiếng Việt là một trong những Sách tiếng Nhật đáng đọc và tham khảo. Hiện Tải FREE sách N5 Mathematics PDF có tiếng Việt đang được Nhà Sách Tiền Phong chia sẻ miễn phí dưới dạng file PDF.

=> Bạn chỉ cần nhấn vào nút “Tải tài liệu” ở phía bên dưới là đã có thể tải được về máy của mình rồi.

Table of Contents

Module 1: Limits and Continuity5
1.1 Introduction…………………………………………………………………………………………………………………..5
1.2 The function…………………………………………………………………………………………………………………..5
1.2.1 System of axes and ordered pairs…………………………………………………………………………….5
1.2.2 Domain and range…………………………………………………………………………………………….6
1.2.3 Dependent and independent variables……………………………………………………………………….6
1.2.4 Functions…………………………………………………………………………………………………………..6
1.2.5 Continuous and discontinuous functions……………………………………………………………………..6
1.2.6 Functions and relations…………………………………………………………………………………………7
1.2.7 Inverse functions………………………………………………………………………………………………..7
1.3 Limits………………………………………………………………………………………………………………………8
1.3.1 Increments……………………………………………………………………………………………………….8
1.3.2 The concept of the limit…………………………………………………………………………………………8
1.3.3 A limit in the form 00\frac{0}{0}00​……………………………………………………………………………………11
1.3.4 L Hospital’s rule………………………………………………………………………………………………..12
Module 2: Differentiation19
2.1 Introduction…………………………………………………………………………………………………………………..19
2.2 Differentiation from first principles……………………………………………………………………………………19
2.2.1 Differentiate from first principles functions in the form fx=axnfx = ax^nfx=axn…………………………………19
2.2.2 Differentiate from first principles functions in the form fx=a±bx±cxfx = a\pm bx\pm cxfx=a±bx±cx……………………20
2.2.3 Differentiate from first principles functions in the form sin⁡x\sin xsinx and cos⁡x\cos xcosx……………………….22
2.3 Differentiation techniques………………………………………………………………………………………………..23
2.3.1 Trigonometric functions……………………………………………………………………………………….23
2.3.2 The chain rule………………………………………………………………………………………………….30
2.3.3 Logarithmic differentiation……………………………………………………………………………………31
2.3.4 Implicit functions………………………………………………………………………………………………33
Module 3: Application of Differentiation42
3.1 Introduction…………………………………………………………………………………………………………………..42
3.2 Determine the roots of cubic polynomials…………………………………………………………………………42
3.2.1 The table for xxx and f(x)f(x)f(x)…………………………………………………………………………………….42
3.2.2 Draw the graph………………………………………………………………………………………………..43
3.2.3 Find the roots………………………………………………………………………………………………….43
3.3 Determine the Turning points of cubic polynomials…………………………………………………………..45
3.4 Rates of change…………………………………………………………………………………………………………..54
3.4.1 Velocity and acceleration……………………………………………………………………………………..54
3.4.2 Related rates of change……………………………………………………………………………………….55
Module 4: Integration Techniques66
4.1 Introduction…………………………………………………………………………………………………………………..67
4.2 Indefinite integrals……………………………………………………………………………………………………….67
4.2.1 Standard forms of integrals……………………………………………………………………………………68
4.2.2 The chain rule………………………………………………………………………………………………….69
4.2.3 Other integrals………………………………………………………………………………………………….70
4.3 Substitution to transform composite functions………………………………………………………………….71
4.4 The integral of the form ∫f′(x)f(x)dx\int f'(x)f(x) dx∫f′(x)f(x)dx……………………………………………………………………..72
4.5 The integral of the form ∫f′(x).fnxdx\int f'(x).f^n x dx∫f′(x).fnxdx……………………………………………………………………..73
4.6 Algebraic fractions……………………………………………………………………………………………………….75
4.6.1 Partial fractions………………………………………………………………………………………………..75
Module 5: Application of the Definite Integral89
5.1 Introduction…………………………………………………………………………………………………………………..89
5.2 The area between two curves…………………………………………………………………………………………94
5.3 Second moment of area………………………………………………………………………………………………102
5.3.1 Second moment of area of a rectangular lamina………………………………………………………..102
5.3.2 Second moment of area of a circular lamina…………………………………………………………….103
Module 6: Differential Equations114
6.1 Introduction…………………………………………………………………………………………………………………..114
6.2 General and particular solutions of differential equations……………………………………………………115
Past Examination Papers………………………………………………………………………………………………..122

Icons used in this book
We use different icons to help you work with this book; these are shown in the table below.

IconDescriptionIconDescription
(Graduation cap icon)Assessment / Activity(Music notes/film reel icon)Multimedia
(Checklist icon)Checklist(Wrench/spanner and gear icon)Practical
(Eye icon)Demonstration/ observation(Two people at lectern icon)Presentation/ Lecture
(Question mark icon)Did you know?(Open book icon)Read
(Magnifying glass icon)Example(Medical cross icon)Safety
(Test tube icon)Experiment(Safety helmet icon)Site visit
(Group discussion icon)Group work/ discussions, role-play, etc.(Warning triangle icon)Take note of
(Gears/workplace icon)In the workplace(Pencil and paper icon)Theoretical – questions, reports, case studies, etc.
(Key icon)Keywords(Lightbulb icon)Think about it

Module 1
Limits and Continuity

Learning Outcomes
On the completion of this module the student must be able to:

  • Introduction to the function
  • Apply the L Hospital’s rule
  • Describe the conditions of continuity
  • Determine whether a function is continuous or discontinuous in a specified point

1.1 Introduction
(Open book icon) This module introduces the function and describes the application of the L Hospital’s rule. It also describes the conditions of continuity and explains how to determine whether a function is continuous or discontinuous in a specified point.

1.2 The function
1.2.1 System of axes and ordered pairs
The reason why the three numbered pairs in Figure 1.1 are termed ordered pairs is because the

        xxx
      

value is written first and then the

        yyy
      

value.

(Image showing a graph with axes labelled X, -X, Y, -Y and three points: (3;2), (1;-1), (-1;-3))

Figure 1.1 A system of axes with three orders pairs

Link tải Drive: https://drive.google.com/file/d/17S6NkZ5GqzEJimtEay-YFLCE1RbDzd51/view?usp=sharing